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Abstract— Analytical and experimental analyses are presented for bulk and diffusional flow of a binary gas
mixture under steady-state conditions. The analyses are valid for the entire region between pure molecular
and viscous flow. The analytical analysis is made for flow through a capillary tube subjected to a small
pressure gradient. A momentum balance is applied to one component of the gaseous mixture in order to
determine an equation for the rate of transport of that component.

Analytical results for the capillary tube are modified for the case of transport through a porous material

by considering this material to be a bundle of capillary tubes. Experimental results for the transport of an
air—water-vapor mixture through freeze-dried meat are presented; these results compare favorably with
the analytical results for the porous material.

NOMENCLATURE

Avogadro’s number [ molecules/mole];
area occupied by component 2 [ft?];
molar flux factor, 1 + N,/N,, dimen-
sionless ;

—N,aL/c,, dimensionless ;

bycy 8SRT/3naDy, [1by/ft*];

constant given by pD, ,/RT [mole/fts];
integration constant;

diffusion coefficient for binary mixture
[ft>/s];

Knudsen’s diffusion coefficient,

3V, [1t7)5);

average diffusion coefficient,
aRTNy(xp — %), 1 = yop o3, .

» ln1 _— [ft°/s];
external force on component 2 per unit
volume [1by/ft?];

Boltzmann’s constant, R/A [ ft1b;/mole-
cule degR];

Knudsen’s number, characteristic di-
mension/mean free path, dimension-
less;
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length of capillary tube [ft];

mass of gas component 2 molecule
[1bm];

mixture molecular density [molecules/
f*];

molecular density of component 1
[(molecules of component 1)/ft];
molecular density of component 2
[(molecules of component 2)/ft3];
molar flow rate of component 1 [(moles
of component 1)/s ft*];

molar flow rate of component 2 [(moles
of component 2)/s ft*];

total pressure [torr];

total pressure drop, (p, — p,) [torr];
partial pressure component 1 [torr];
partial pressure component 2 [torr];
capillary radius [ft];

reflection coefficient, dimensionless ;
universal gas constant [ft lb;/mole
degR];
temperature [°R1];
macroscopic gas
[ft/s];
macroscopic velocity of component 1

[ft/s];

mixture velocity
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u,,  macroscopic velocity of component 2
[ft/s];

v, volume occupied by both components
[f°];

V,,  volume occupied by component 2 [ft*];

V,, average molecular velocity of com-

ponent 2, (8K T/m,n)?* [ft/s];
X, axial tube coordinate [ft];

y;,  concentration of component 1 [moles
of component 1/moles of mixture];

y»,  concentration of component 2 [moles
of component 2/moles of mixture];

Jod nondimensional axial distance, x/L,
dimensionless.

Subscripts

a, air;

e, effective value;

L, position at tube exit ;

w, water-vapor ;

0, position at tube entrance;

1, component 1;

2, component 2.

INTRODUCTION

THERE are many applications requiring the pre-
diction of the combined bulk and diffusional flow
rate in the transition regime under the conditions
of a non-uniform total pressure gradient. For
example, the freeze-drying of food products in-
volves the simultaneous diffusion and bulk
movement of a binary mixture of air and water-
vapor through a porous material under the
influence of a small pressure gradient. The void
structure of the porous material is such that the
transport occurs in the region between the mole-
cular and viscous condition (0-01 < Kn < 10).
This region will be subsequently referred to as
the “transition regime”.

To understand the transition regime, first
consider the case where the mean free path of the
molecules is much less than the characteristic
dimensions of the system such as the tube
diameter. If a total pressure gradient exists, both
components of the binary mixture are transferred
by bulk movement of the gas. If, in addition, a
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concentration gradient exists the movement of
each component is superimposed on the bulk
movement. At the opposite extreme, when the
mean free path is much greater than the charac-
teristic dimension, there is a negligible inter-
action between the molecules. Consequently the
transport is given by Knudsen’s [1] equation
for molecular streaming under the influence of
either a concentration or total pressure gradient.
Between these extremes, when the mean free
path and the characteristic dimension are
approximately equal, a combination of these
transport modes occurs and this phenomenon is
termed transition flow.

Evans et al. [2] present equations for com-
bined bulk and diffusional transport in the
transition regime under the conditions of a non-
uniform total pressure distribution. However,
the so-called “‘dusty gas” model was used in
which the porous material is idealized as another
constituent of immovable large molecules. In
addition, the results are valid only for the special
case of self-diffusion or counter-diffusion of
gases with equal molecular weight. The current
paper is concerned with porous materials of a
capillaric nature rather than one composed of
extremely fine particles for which the dusty gas
model is valid. In addition, all flux ratios of the
two constituents are considered. A different
method (momentum-transfer method) is used
in the present case to obtain the governing dif-
ferential equation.

Harper and Chichester [3] state that experi-
mental thermal conductivity data for gases in the
transition regime can be used to predict the
product of pressure and diffusion coefficient,
pD,,. They point out that for the continuous
flow regime, simple kinetic theory shows that
both the thermal conductivity and pD,, are
independent of pressure. Furthermore, in the
transition regime, due to the analogy between
heat and mass transfer, both quantities should
decrease in a similar manner with decreasing
pressure. However, in the continuous flow
regime, Present [ 1] notes that the simple kinetic
theory expression giving thermal conductivity
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to be independent of pressure gives excellent
agreement with experimental data. The corre-
sponding development for pD,, shows that it
should be independent of pressure but heavily
dependent on the concentration of the gaseous
components; this expression for pD,, cannot be
experimentally substantiated. The dichotomy
between the simple kinetic theory expression
and experimental data results from the basic
difference between the nature of the transport of
mass and energy. For energy transfer across a
given plane, the specific identity of the com-
ponent molecules (either component 1 or com-
ponent 2) is not important, whereas for mutual
diffusion, the identity of the molecules is quite
important. The mass transfer depends in part
on whether the molecules collide with like
or unlike molecules before crossing the plane.
The collision of like molecules prior to crossing
the plane does not affect the diffusive transport
process, but is greatly affected if unlike mole-
cules collide. Thus since the two mechanisms
of transfer are not exactly analogous in the con-
tinuous flow regime, it appears unlikely that
they would be analogous in the transition
regime. It is desirable, therefore, to analytically
and experimentally examine the assumption
made by Harper and Chichester for combined
bulk and diffusion flow of a binary gas mixture.
Small total pressure and concentration gradients
are assumed to exist simultaneously.

Consequently, the purpose of this paper is to
present analytical results to determine the rate
of mass transfer under the above conditions.
Also, the analytical work is compared with ex-
perimental findings and with the results of the
theory of Harper and Chichester.

ANALYTICAL INVESTIGATION

Johnson [4] suggests that the steady diffusion
equation for continuous transport can be inter-
preted as an equation of motion of one of the
constituent gases. The equation in the form of an
equation of motion valid for the one-dimensional
transport of a binary gas at uniform total pres-

sure 1S

KT
F, —dp, — nD

12

nlnz(uz - ul) dx = 0 (1)

The first term in equation (1) is the total external
force per unit area on component 2, the second
term is the force per unit area on component 2
due to a partial pressure gradient and the third
term is the momentum transfer to component 2
due to collisions with component 1.

If a small total pressure gradient exists, the
Maxwell-Boltzmann  distribution function
evaluated at the average pressure is very nearly
the same as for the uniform pressure case.
Therefore, the last term in equation (1) still
adequately describes the momentum exchange
between the two constituents. However, the
total pressure gradient causes an effective ex-
ternal force on component 2 which is equal to
the product of the total pressure gradient and
the average area occupied by this component.
From Dalton’s law, it can be easily shown that
the cross-sectional area of component 2 is

A, = 7"2!72/ 12 2

Since the net force on component 2 due to the
total pressure gradient is A,dp, equation (1)
can be written as

KT .
p2dp/p — dp, = ——nyny(u; — uy)dx. (3)

nD,,
Equation (3) is valid for continuous flow when
only intermolecular interactions are important.
For transitional flow, one must consider molecu-
lar encounters with the wall ; therefore, equation
(3) must be altered to include the resulting mo-
mentum exchange with the wall. From kinetic
theory, the number of molecules striking the
inside of the capillary surface per unit time is
nrn,V, dx/2. If diffuse reflections occur, the
average velocity change resulting from a molecu-
lar collision with the wall is u,. In general, the
average velocity change is u,S, where S is the
reflection coefficient, defined as the number of
molecules striking a unit area with completely
diffuse momentum exchange divided by total
number of molecules striking the unit area.
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Therefore, the momentum exchange with the wall
for each molecule is m,u,S. Taking this into
consideration, equation (3) becomes

KT
(p2/p)dp — dp, = ———nyny(u, — uy)dx
nD,,

+ Smyuyn,V, dx/2r. (4)

This equation is the final form of the differential
equation of motion for one component of a
binary gas mixture. It is valid for the case of
combined bulk and diffusional flow in the transi-
tion regime under the condition of a non-
uniform total pressure gradient.

An expression for the average molecular
velocity can be determined from kinetic theory if
a Maxwellian distribution is assumed. This
expression is

V, = BKT/mmy)*. (5

equation (4) can be combined with equations

(5) and (6) to give

—pdy,
RT

_ 8S
~ T 3nDy,

+ (n1 — N, %)/nDU:l dx. (7)

From Dalton’s law of partial pressures,

y1 +y, =10, @®)
and making use of the definition of a, y, and y,,
1
Yar = — +
a

1
ﬁ{mg (po + Ap) + [bl (1 + Z—Z)] + (—2)-2—![b1<1 +
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and substituting equation (8) into equation (7)

gives
/ [1 —ay, +

N2 dx =
_pDy, dy,
RT
For the small pressure gradients considered, it is
assumed that p can be expanded in a Taylor
series neglecting the second-order terms to give

8SD,,
3nDK2:I - O

p
= == x. 10
p=pt dxt (10)
Also, dp/dx is approximated by Ap/L so that
A
P =po+ fp x. (11)
From kinetic theory,
pDy;
=7 = Ci (12)
where C, is a constant. From the definition of z,
dx = L dz. (13)

Substituting equations (11}(13), into equation
(9) gives on rearrangement,

dy, N;La
dz C, Y2 =
~N2L ) 8S C,RT (14)
C, 3nDy, po + Apz

Substituting the definitions of b, and b, into
equation (14), integrating and applying the
boundary conditions y, = y,, at z = 0 and
ya = yyatz = 1 gives

Po z 1
zs?)] +(T)3‘![b1<1

L)

Ap

w3

Po by L (b V', ] (ﬁ )3
p (_A_p b1> {103 Po + Ap Po + 22 <Ap Po) + 33 \Ap Po| +

exp (by)

(15)
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The series contained in the braces converges for
all values of b,(po/Ap) and b,(p, + Ap)/Ap. It is
convenient to define an average diffusion co-
efficient D, for the transition regime by means of
the following equation:

pD, 1 yaL

= In>— 1
RTLa "1 = yp (16)

Equations (15) and (16) can be solved by the
following trial and error procedure. First,
assume a value of D, and then calculate the
corresponding value of N, from equation (16).
Next use this value of N, to calculate y,; from
equation (15) and then compare the magnitude
of the calculated value of y,, with the known
value from the boundary condition at the tube
exit. This procedure can be repeated until the
correct value of D, is obtained.

N,

APPLICATION TO FLOW IN POROUS MEDIA

The usual porous material contains numerous
small voids which form complex flow paths for
vapor transport. These flow paths are non-
uniform in cross-section and are not straight.
The method used for analysing this case is to
assume the voids form circular and straight
capillaries. However, for actual substances, the
analytical equations resulting from these as-
sumptions should be altered to include the
effects of devious flow paths and blockages
caused by the structure of the porous sample.
Parameters which account for these irregulari-
ties are called “effective parameters”.

The analytical results presented in this paper
can be used for actual porous media in obtaining
the magnitude of the effective diffusion coeffi-
cient if the values of D,, and Dy, used in the
definitions of b, and b, are the effective values for
the porous sample. Effective values are defined
so that the vapor flux can be written in terms of
the total sample area and its actual thickness.
Due to the complexities of the structure of
porous materials, the effective values of D, , and
Dy, are not predicted analytically ; but, instead,
are measured experimentally. In order to reduce
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the amount of experimental data required,
Scott and Dullien [5] suggest that

(DIZ)e/(DKZ)e = D11/DK2- (17)

Thus by obtaining the value of (D,), by a
single experiment, the value of (Dy,), can be
calculated by substituting the experimental
value of (D;,), and the known values of D,
and Dy, into equation (17). To calculate a
theoretical value for (D,), for the porous sample,
the values of (D,,), and (Dg,), are used to ob-
tain b, and b, from their definitions, and then
equations (15) and (16) are solved by the itera-
tion previously described.

EXPERIMENTAL INVESTIGATION

The experimental equipment used is shown
schematically in Fig. 1. The absolute pressure
on the lower side of the porous sample was
measured by means of a Wallace and Tiernan*
pressure gage. The pressure drop across the
sample was determined with a Dwyert differen-
tial pressure gage. The temperatures above and
below the porous material were determined with
copper—constantan thermocouples. The species
concentrations above and below the material
were determined with Hygrodynamicsi electric
hygrometer sensing elements. These eclements
were calibrated by means of the procedure de-
scribed in reference [6]. The weight was mea-
sured with a Mettler§ balance.

Tests were conducted on several samples of
porous freeze-dried beef steak using an air—
water-vapor mixture. The procedure involved
placing several small cubes of ice in an insulated
cup located in the inner cylinder (see Fig. 1). The
porous sample was then sealed as shown over
the open end of the inner cylinder and the
vacuum chamber was closed. Valve 1 (solenoid
operated) was opened so that during pump down
no pressure gradient existed between the inner
cylinder and the vacuum chamber. Valve 2 was

* Wallace and Tiernan, Inc., Bellville, N.J.

1 F. W. Dwyer Mfg. Co., Michigan City, Indiana.

1 Hygrodynamics, Inc., Silver Spring, Maryland.

§ Mettler Instrument Corp., Highstown, New Jersey.
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opened and the chamber pumped until the de-
sired pressure was obtained and then this valve
was closed. Valve 3 was opened and closed for
admitting air as required to obtain the desired
concentrations. Valve 1 was then closed so that
the water-vapor would flow through the porous
sample and eventually to the condenser. Dry
ice and acetone were used as the condenser
coolant. Valve 4 was then adjusted to give the
desired back pressure.

In order to determine when equilibrium con-
ditions existed, the pressure, concentration, and
temperatures above and below the sample were
measured. If these measured quantities re-
mained unchanged for a period of 2 h, it was
assumed that equilibrium conditions held and
the pressure, temperature, and water-vapor con-
centration above and below the sample were
recorded. The weight was measured with a
Mettler balance and was recorded. This pro-
cedure was repeated at 30 min intervals over a
2 h period. If conditions remained constant, the
measurements were considered valid. The mass-
flow rate was calculated from the weight loss;
from this known rate, the thickness of the sample,
and the pressure, temperature, and concentra-
tion data, the effective average diffusion coeffi-
cient was calculated from equation (16).

RESULTS
The experimental results for (D,), from mea-
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surements made on several samples of beef are
given in Table 1. In addition, the values of
(D,), calculated by using the theory presented in
this paper are given for each of the conditions
used in the experimental work. In applying the
theory, a value for (D,), of 5 the value for free
diffusion in air at atmospheric pressure as sug-
gested by Harper and Chichester [3] was used.
Completely diffuse momentum transfer was
assumed giving § = 1. Although S has not been
measured for the present case, data presented by
Carman [7] for similar cases indicate that this
assumption is relatively accurate. It is seen that
close agreement exists between these theoretical
and experimental values of (D,), appearing in
Table 1. Since different samples were used, the
property variation of the samples can account
for most of the deviation between theory and
experiment.

The final information presented in Table 1 is
the value of (D,), predicted by the theory given
in reference [3]. A much wider discrepancy
exists between this theory and the experimental
data than exists for the analytical work given
above. This lack of correlation probably lies in
the assumption of reference [3] that the transfer
modes of heat conduction and diffusion are
analogous. As discussed in the introduction of
this paper, these modes are not analogous; as a
consequence, a large variation from experiment
is to be expected.

Table 1. Effective average diffusion coefficient for freeze-dried beef

Average pressure Vo YL (D)), obtained  (D,), obtained (D), calculated by
(Po + p1)/2 experimentally by theory of  theory of reference
this paper [3]

(torr) (ft?/s) (ft?/s) (ft3/s)

1-44 0-805 0-585 0015 0-017 0-031

1-58 077 0-565 0019 0018 0028

1-64 0-856 0-57 0-012 0-015 0-028

225 0-813 0-52 0-010 0-010 0-021

2:28 0-683 0-55 0017 0015 0020
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Résumé—Une analyse théorique et une étude expérimentale sont exposées pour les écoulements en bloc
et de diffusion d’un mélange gazeux binaire en régime permanent. Ces études sont valables dans toute la
gamme entre ’écoulement moléculaire et I’écoulement visqueux. La théorie de I'écoulement & travers un
capillaire sous I'effet d’un faible gradient de pression a été effectuée. On établit le bilan de la quantité de
mouvement d’un constituant du mélange gazeux afin d’obtenir une équation pour la vitesse de transport
de ce constituant.

Les résultats théoriques pour le capillaire sont modifiés dans le cas de transport & travers un matériau
poreux en le considérant comme un faisceau de capillaires. Les résultats expérimentaux pour le transport
d’air humide & travers de la viande lyophilisée sont présentés; ces résultats sont en bon accord avec les

résultats théoriques pour le matériau poreux.

Zusammenfassung—Analytische und experimentelle Analysen wurden fiir die Gesamtstromung und die
Diffusionsstromung eines bindren Gasgemisches im stationidren Zustand angegeben. Die analytische
Untersuchung wurde an der Stromung durch ein Kapillarrohr bei kleinem Druckgradienten gemacht.
Fiir eine Komponente des Gasgemisches ist eine Impulsbilanz durchgefiihrt um eine Gleichung fiir die
Transportgeschwindigkeit dieser Komponente zu erhalten.

Die analytischen Ergebnisse fiir das Kapillarrohr sind im Falle des Transports durch pordses Materiai
derart modifiziert, dass dieses Material als ein Biindel von Kapillarrohren angesehen wird. Versuchsergeb-
nisse fiir den Transport eines Luft—Wasserdampfgemisches durch gefriergetrocknetes Fleisch sind angege-

ben; diese Ergebnisse stimmen gut mit den analytischen fiir pordses Material iiberein.

AngoTanua—BHnonHeH TeopeTHdecku# M YKCIEPUMEHTANLHHN amamus AuddysnoHHoro
TEYEHUA cMecH GMHAPHOrO rasa IPHM CTALMOHADHOM DeMMe. AHANNB CIPABENJIMB A Beel
00J1aCTH MeIy YMUCTO MOJNEKYISDHHIM M BASKUM TeueHusamu. Ilpomepen TeopeTumyecKuit
aHamM3 TeYeHUs B KaMMIIAPHON TpyOke, ropgsepraemoit KeHcTBHIO HeGOJNBUIOrO rpajueHTa
masienud. Ilpu momomm meroa 6amaHCa KONMYECTBA ABMIKEHHMA NOIYYEHO YDPABHEHHUS
HepeHoca OTAeIbHOr0 KOMIIOHEHTA ra30BOMt cMecH.

Teopernueckne peaynbTaTH, NMOJTYYeHHHE Ha KANMILIAPHON TpyGKe, MCIOIB30BAHH AJIA
pacyéra mepeHoca 4epes NOPUCTHI MaTepUas, KOTOPHI PACCMATPUBAJICH KAK IYYOK aNUILIIAD-
HeiX TpyOok. IlpuBefeHsl sKCIepUMEHTANbHBE JAHHHE IO MEPEHOCY CMeCH BO3AYX-BOJa-
nap B MAce, NMOABEPraeMoOM CYIIKe 3aMOPAKUBAHMEM. JTH Pe3yIbTATH AOBOJBLHO XOPOIIO

COTJIACYIOTCA C TEOPETHUYECKHMH JAHHBIMU I IIOPMCTOTO MATEpHaa,



